
Minimum Viable Product

This document describes how to set up and test-drive the Spack / SpackDev
MVP1a (“LArSoft edition”).

Overview of the MVP

The MVP is intended to allow experienced experimenters to get a first look at
the intended build, development and deployment system that is intended to
replace UPS and cetbuildtools / MRB. This system is based on Spack, an HPC-
originated package management and build orchestration system, and includes a
FNAL-authored companion system called SpackDev to facilitate the simultaneous
development of multiple packages.

In order to use the MVP, you should choose at least one package that you wish to
“develop” i.e manipulate the code, build, test and debug. Anything you choose
should have as few “external” dependencies as possible beyond the standard
LArSoft distribution. Each such dependency that cannot be expected to exist
already on the system must have a Spack recipe: we would be happy to work
with you to ensure that this is the case. If you wish to get a feel for the system
without doing too much work, you may choose any or all of the art suite or
LArSoft packages to develop.

To get help at any point or provide feedback on this documentation or the
MVP itself, please send email to spackdev-team. Subjects could include (but
are not limited to): * Clarifying / improving the documentation. * Production
of recipes or DAG extensions for your package(s) and their dependencies (see
below). * Converting your package from cetbuildtools to cetmodules. * Workflow
/ usability issues. * Design / conceptual questions or problems.

Limitations and Requirements

• The MVP is currently limited to one platform (SL7 and related), one
compiler (GCC 7.3.0) and one C++ standard (C++17).

• Only the BASH shell is supported currently; other advanced Bourne-type
shells (such as zsh) may work, but are not guaranteed.

• All packages (including the compiler) must be built in-place.
• The products available as dependencies are currently somewhat limited

from the point of view of, say, LArSoft, but products can be mde available
as necessary.

• Your system must pass the checkPrerequisites test (this will be enforced
by the bootstrap script). If your system is missing prerequisites, please
have your system administrator install the missing RPMs.

• At least 12GiB of free space is required, and several hours are required for
dependencies to be built.

• Packages to be developed with SpackDev must (at this time) be build-
able with CMake. If they are built using cetbuildtools, then they

1

https://spack.readthedocs.io/en/latest/index.html
mailto:spackdev-team@fnal.gov?subject=MVP1a
https://cdcvs.fnal.gov/redmine/projects/artutilscripts/repository/revisions/master/raw/tools/checkPrerequisites

must be retrofitted to use cetmodules instead (see below for details), as
cetbuildtools implicitly depends upon UPS for its operation.

Quick start

The following will get you going with a package from LArSoft. Note that the
spack dev init command will take a significant amount of time (an hour or so
on a reasonably fast machine).

• Obtain the bootstrap script.
• chmod +x bootstrap-mvp

• ./bootstrap-mvp -j <ncores> -v <scratch-dir>/MVP

(<scratch-dir> must exist; MVP must either not exist or be empty).
• cd MVP

• . setup.sh

• spack dev init -b spackdev-larsoft --default-branch=MVP1a \

--dag-file ../spack_glue/MVP/templates/larsoft-dag.txt \

-v larsim

• . spackdev-larsoft/spackdev-aux/env/env.sh

• cd spackdev-larsoft/build

• CTEST_PARALLEL_LEVEL=<ncores> cmake --build . -j <ncores>

• spackdev env --cd --prompt larsim

• ctest -j<#>

Bootstrapping a new area

• Download the bootstrap-mvp script (e.g.):

curl -O -J -L --fail https://cdcvs.fnal.gov/redmine/projects/\

spack-planning/repository/revisions/master/raw/MVP/bootstrap-mvp

chmod +x bootstrap-mvp

• Execute bootstrap-mvp -h to understand available options. In short:

– The non-option argument should be the top directory of the MVP
area. If not specified, we default to the current working directory.
The directory specified should be empty. If it does not exist, it will
be created provided its parent exists.

– If you wish, you may specify out-of-tree directories for the “spack-
tools” area containing the compiler, and for the “spack-data” area
which will contain the bulk of the packages you build. You would do
this if you wanted to put reproducible “scratch” data on a different
(possibly not backed-up) filesystem than the rest of the MVP area.

– The first time you run, you may wish to add a -v option to see more
detailed progress information.

The bootstrap script will create the various areas where you specify, including:

2

https://cdcvs.fnal.gov/redmine/projects/spack-planning/repository/revisions/master/raw/MVP/bootstrap-mvp
https://cdcvs.fnal.gov/redmine/projects/spack-planning/repository/revisions/master/raw/MVP/bootstrap-mvp

• spack-tools, an area containing the compiler and one or two other tools,
such as git.

• spack/, containing the Spack application, its accompanying code and all
its package recipes

• fnal-art/, containing recipes for the art suite, and into which you would
place your own recipes.

• spack-data, an area containing all the other products to be built.
• spackdev/, containing the SpackDev application and its accompanying

code.
• spack_glue/MVP/, containing the bootstrap script, these instructions and

more.
• setup.sh, a BASH setup script which, when sourced, will get your envi-

ronment ready to initialize a SpackDev area and start developing.

The script will take relatively little time to complete (depending on the capabili-
ties of your system) as it should be able to download relocatable binary packages
of the tools (such as GCC and its dependencies).

Setting up to use SpackDev to develop your packages

Now all the low level tools are installed, you will need to tell SpackDev about
all the packages and dependencies you wish to develop. This will involve
a package.py file for each package you wish to develop, and a “DAG” file
containing the list of all the packages you might wish to develop and their
dependencies, including all variant and version configuration information. This,
while not being a DAG in its own right, will allow Spack to produce a fully-
specified DAG with which to ensure that everything will be built as required.

Creating your package.py files

Full documentation on the Spack system may be found at https://spack.read
thedocs.io/en/latest/index.html, including a getting started guide, packaging
guide and command reference.

• In the spack_glue/MVP/templates directory is a file cet_package.py.
• For each package XXXX, make a directory spack/xxxx and copy it to

spack/xxxx/package.py.
• Load package.py into an editor. Look for all instances of “###” (with a

trailing space to avoid comment rule lines) as these denote areas requiring
attention. Currently they are:

– Class name (camel case by convention) and description.
– Home page URL (normally your Fermi Redmine top-level wiki URL).
– Git base URL (normally the same as your Fermi Redmine project

page URL).
– The version declaration(s), including name (e.g. ‘develop’), and

branch.

3

https://spack.readthedocs.io/en/latest/index.html
https://spack.readthedocs.io/en/latest/index.html
https://spack.readthedocs.io/en/latest/getting_started.html
https://spack.readthedocs.io/en/latest/packaging_guide.html
https://spack.readthedocs.io/en/latest/packaging_guide.html
https://spack.readthedocs.io/en/latest/command_index.html

– The cxxstd variant declaration, which is only necessary if your pack-
age contains C++ code.

– “Build-only” dependencies: packages needed at build time, but not
at link or run time.

– “Other” dependencies. Note that these are direct dependencies i.e.

packages whose headers and / or libraries you need in your current
package. Indirect dependencies should be handled by those dependen-
cies which need them directly. Specify version or variant requirements
for your dependencies here also (see Spack documentation, referenced
above).

– The setup_environment() and setup_dependendent_environment()

functions ensure the expected environment is set up for your package,
both when it is set up as a top level product (setup_environment())
and when it is a a dependency of another product being set up
(setup_dependent_environment()). Exactly which environment
variables need to be propagated in this way will depend on the details
of your package.

Specifying the full dependency tree for all packages and dependencies

An example file (spack_glue/MVP/templates/larsoftdag.txt is shown below,
with explanation following:

larsoft@MVP1a \

^wirecell@0.10.9 cxxstd=17 ^jsoncpp@1.7.7 cxxstd=17 \

^jsonnet@0.11.2 cxxstd=17 ^dk2nudata@01_07_02 cxxstd=17 \

^dk2nugenie@01_07_02 cxxstd=17 ^genie@2_12_10 cxxstd=17 \

^lhapdf@5.9.1 cxxstd=17 ^pdfsets@2.8.6 ^log4cpp@1.1.3 cxxstd=17 \

^cry@1.7 cxxstd=17 ^geant4@10.03.p03~data cxxstd=17 \

^xerces-c@3.2.2 cxxstd=17 ^ifdh-art@MVP1a cxxstd=17 \

^ifdhc@2.3.10 cxxstd=17 ^ifbeam@2.3.0 cxxstd=17 ^libwda@2.26.0 \

^nucondb@2.3.0 ^art-root-io@MVP1a cxxstd=17 ^art@MVP1a cxxstd=17 \

^gallery@MVP1a cxxstd=17 ^canvas-root-io@MVP1a cxxstd=17 \

^root@6.16.00~root7+davix+fits+fortran+mysql+sqlite+postgres+python+ssl \

+xrootd+fftw+pythia6+tmva cxxstd=17 ^gsl@2.5 ^fftw@3.3.8~mpi~openmp \

^intel-tbb@2019.3 cxxstd=17 \

^postgresql@9.6.11+client_only+python+perl+threadsafe+gssapi lineedit=libedit \

^mysql@5.5.62+client_only cxxstd=17 ^xrootd@4.8.5+python~readline cxxstd=17 \

^canvas@MVP1a cxxstd=17 ^py-numpy@1.15.4 ^netlib-lapack@3.8.0 \

^pythia6@6.4.28 ^cppunit@1.14.0 cxxstd=17 ^range-v3@0.4.0 cxxstd=17 \

^clhep@2.4.1.0 cxxstd=17 ^messagefacility@MVP1a cxxstd=17 \

^hep-concurrency@MVP1a cxxstd=17 ^fhicl-cpp@MVP1a cxxstd=17 \

^py-pybind11@2.2.4 ^cetlib@MVP1a cxxstd=17 ^cetlib-except@MVP1a cxxstd=17 \

^boost@1.69.0 cxxstd=17 ^cetmodules@1.02.04 ^cmake@3.13.2 \

^libxml2@2.9.9+python ^python@2.7.15 ^sqlite@3.26.0 ^catch~single_header

critic@MVP1a

4

ninja@1.8.2

cppgsl@2.0.0 cxxstd=17

This file is in the (somewhat arcane) format expected by a spack install

command. Basically, it is:

<package> <variants>... ^<dependency> <dep-variants> ^...

...

Subsequent lines indicate packages that are not in the dependency trees of other
package specifications, but which may share depdenencies in common. These
common dependencies do not have to be specified a second time–they will be
harmonized. Be sure to specify any non-default variants on the command line,
not only for the top level package but for any dependencies.

Developing a single package If you have one package you wish to develop,
which (say) depends on larsoft, you would specify it ahead of larsoft on the
same line with any variants, and ˆ-labeled direct and indirect dependencies, and
prefix the reference to larsoft with ˆ to identify it as a dependency. If your
package does not depend directly on larsoft, but they have dependencies in
common, then your package and any dependencies not in common with larsoft
would be specified on a separate line.

Developing multiple packages If one of the packages you wish to develop
is a “common dependent” which can count every other package as a (direct
or indirect) dependency, then all your other packages should be specified as
dependencies of the top-level package (with a leading ˆ). Otherwise, use as many
separate entries as you need, following the prescription for the single package
case, above.

Initializing a SpackDev area

Once you have recipes and a fully-specified DAG file, you are ready to initialize
a SpackDev development area.

Spack (and git, and others) is an application that has subcommands. If you
have bootstrapped the MVP successfully, one of those subcommands is dev. It
also has subcommands, which may be listed by invoking the usage help with
spack dev -h. The first one you will need is spack dev init. You may get
more information about how to invocate any subcommand with spack dev

<subcommand> -h. Simply stated however, the usage is:

spack dev init -b <base-dir> --dag-file <dag-file> \

--default-tag=MVP1a <package>+

where:

• <base-dir> is the directory you wish to serve as the root of your develop-
ment area (current working directory if not specified).

5

• <dag-file> is the file you generated earlier.
• <package>+ are all the packages you wish actually to develop together, in

the form <package>@<tag> or <package>ˆ<branch>.
• --default-tag specifies the tag to be used for packages for which you

have not explicitly specified a branch or tag. See the usage help for more
details.

SpackDev is capable of using the DAG created from your dag-file to identify
any packages you may have missed inbetween the ones you mentioned which
must be checked out and built locally in order to provide a consistent whole.
Note however that recipes must exist for all of these, and any other “external”
dependencies outside those you wish to develop in a SpackDev area, and that
they must be properly included in the DAG file.

Note: one consequence of the current state of the project is that the initialization
process is somewhat time-consuming, even discounting the time taken to build
all the dependencies.

When your SpackDev development area has been initialized, you will see inside
it:

• build/: where the build takes place.
• bin/: links to tools such as cmake or ninja.
• install/, where products are installed.
• srcs/: all checked-out sources appear here. This also contains the gener-

ated CMakeLists.txt file.
• tmp/: CMake-generated temporary files, such as target timestamps.
• spackdev-aux/: containing tool wrappers and environment information

for each package.

Developing in your SpackDev area.

A successful execution of spack dev init will culminate in the invocation of
cmake -G<generator> ../srcs in the build directory, thereby generating a
Makefile. After following the instruction to source the env.sh file to initialize
your environment, you should be able to invoke:

CTEST_PARALLEL_LEVEL=<ncores> cmake --build <build-dir> -j <N>

where <build-dir> is the top-level build directory mentioned above.
CTEST_PARALLEL_LEVEL=<ncores> make -jN or ninja as appropriate from
inside <build-dir> will also have the desired effect. Within the global build,
each package being developed is built, tested and installed separately, and
dependencies are satisfied from the installation rather than the build areas.
make help in the top level build directory will give one a list of targets, such as
<package> or <package>-configure.

Most of your time however, will be spent developing one package at a time,
writing code, compiling, testing and debugging. Another SpackDev command

6

now becomes useful:

spack dev build-env [--cd] [--prompt] <package> [<cmd>...]

This will start a subshell (or run a command) with the correct environment
for the package you wish to develop. Optionally you can be placed in the
appropriate build subdirectory (--cd) or have a colored label added to your
command prompt indicating the current package being developed (--prompt).
Notes:

• The build area for the current passage should have at least a top level
Makefile (or ninja.build) Executing make <package>-configure at
the global level should generate this, assuming your CMakeLists.txt files
are correct.

• You should always exit this environment before executing a global build
to avoid possible inconsistencies.

Addendum: converting cetbuildtools packages to use

cetmodules

Below we show for illustration the changes made to certain CMakeLists.txt

files in the art package to transition from cetbuildtools to cetmodules. In
broad brush, the changes are:

• To the top-level CMakeLists.txt:
– Changes to the cmake_minimum_required() directive. A suitable

invocation might be:
cmake_minimum_required(VERSION 3.12...3.14 FATAL_ERROR)

The minimum version should be at least 3.12; the upper end of the
range represents the highest CMake version for which all policies
should be considered NEW unless otherwise specified.

– Version information is now specified in the project() call in standard
dot notation rather than in the product_deps file in UPS notation.
Note that the product_deps file is now vestigial and should be re-
moved from the ups/ directory. If you have any special notations
in the CMake template files in this directory contact us for help,
otherwise these files should be removed also.

– The cetmodules code is located with a simple find_package(cetmodules

REQUIRED) directive.
– find_ups_XXX() calls are obsoleted in favor of standard CMake

find_package() calls; minimum version requirements should be speci-
fied in dot notation. Some packages such as CLHEP or ROOT understand
specification of individual components to reduce clutter. For those
packages for which find_package() does not work, cetmodules pro-
vides the cet_find_library() and cet_find_simple_package()

funcions.
– Additions to CMAKE_MODULE_PATH are necessary only for modules your

own package provides for its own purposes: others will be located via

7

find_package()

– The UseCPack facility is no longer required.
– Specification of non-default or not-usually-required installation direc-

tories should be set with appropriate CMake set() commands such
as:
set(fcl_dir job)

set(gdml_dir gdml)

set(fw_dir fw)

• To ups/CMakeLists.txt:
– The only directive required here is cet_cmake_config(). Its presence

here is historical, and could perfectly well be moved up to the top-level
CMakeLists.txt file, provided it comes last, including after any and
all subdirectory excursions.

• To CMakeLists.txt files where code is compiled and linked:
– Generally speaking, references to other cetmodules libraries on the

link line should be in “target-style” rather than “variable-style” nota-
tion.

– The format of the variables representing the ROOT component li-
braries has changed (e.g. ROOT_HIST to ROOT_Hist_LIBRARY) . One
is encouraged instead to use target notation (e.g., ROOT::Core,
ROOT::Physics, etc.).

– Similarly, links requiring Boost and the Intel Threading Building
Blocks (TBB) library should now be referred to in target notation
as dictated by their respective native CMake configuration files as
loaded by find_package().

For example, the differences between the CMakeLists.txt files of the art package
between cetbuildtools and cetmodules are:

diff --git a/CMakeLists.txt b/CMakeLists.txt

index 09526f0..b6cc1c5 100644

--- a/CMakeLists.txt

+++ b/CMakeLists.txt

@@ -12,18 +12,18 @@

make package (builds distribution tarfile)

==

+# Required to keep CMake happy.

+cmake_minimum_required(VERSION ${CMAKE_VERSION} FATAL_ERROR)

+# Actual version requirement.

+cmake_policy(VERSION 3.4)

-# use cmake 2.8 or later

-cmake_minimum_required (VERSION 2.8)

+# Project information.

+project(art VERSION 2.11.02 LANGUAGES C CXX)

8

-project(art)

+# cetmodules contains our cmake modules

+find_package(cetmodules REQUIRED)

-# cetbuildtools contains our cmake modules

-find_package(cetbuildtools REQUIRED)

-

-list(APPEND CMAKE_MODULE_PATH

- $ENV{CANVAS_ROOT_IO_DIR}/Modules

- ${CMAKE_CURRENT_SOURCE_DIR}/Modules)

+list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/Modules)

include(CetCMakeEnv)

cet_cmake_env()

@@ -34,30 +34,21 @@ cet_set_compiler_flags(DIAGS VIGILANT

EXTRA_FLAGS -pedantic

EXTRA_CXX_FLAGS -Wnon-virtual-dtor -Wdelete-non-virtual-dtor)

-cet_have_qual(sse2 SSE2)

-if (SSE2)

- cet_add_compiler_flags(CXX -msse2 -ftree-vectorizer-verbose=2)

-endif()

-

cet_report_compiler_flags()

-# these are minimum required versions, not the actual product versions

-find_ups_product(canvas_root_io)

-find_ups_product(canvas v1_06_00)

-find_ups_product(messagefacility)

-find_ups_product(fhiclcpp)

-find_ups_product(cetlib v2_01_00)

-find_ups_product(cetlib_except v1_01_00)

-find_ups_product(clhep)

-find_ups_product(cppunit)

-find_ups_product(cetbuildtools v6_00_00) # LIBRARY_OUTPUT_DIRECTORY, etc.

-find_ups_product(sqlite)

-find_ups_product(range)

-find_ups_boost()

-find_ups_root()

-

-# SQLite

-cet_find_library(SQLITE3 NAMES sqlite3_ups PATHS ENV SQLITE_LIB NO_DEFAULT_PATH)

+find_package(canvas_root_io REQUIRED)

+find_package(canvas REQUIRED)

+find_package(cetlib_except REQUIRED)

9

+find_package(fhiclcpp REQUIRED)

+find_package(messagefacility REQUIRED)

+find_package(TBB REQUIRED)

+find_package(CLHEP COMPONENTS Matrix Vector Random REQUIRED)

+include_directories(${CLHEP_INCLUDE_DIRS})

+find_package(ROOT REQUIRED COMPONENTS)

+find_package(Boost COMPONENTS date_time filesystem program_options

+ regex system unit_test_framework REQUIRED)

+

+cet_find_library(SQLITE3 NAMES sqlite3 REQUIRED)

macros for art_dictionary and simple_plugin

include(ArtDictionary)

@@ -76,11 +66,9 @@ add_subdirectory(tools)

source

add_subdirectory(art)

-# ups - table and config files

-add_subdirectory(ups)

-

CMake modules

add_subdirectory(Modules)

-# packaging utility

-include(UseCPack)

+# ups - table and config files

+add_subdirectory(ups)

+

diff --git a/ups/CMakeLists.txt b/ups/CMakeLists.txt

index fe33cc7..937d12d 100644

--- a/ups/CMakeLists.txt

+++ b/ups/CMakeLists.txt

@@ -1,6 +1,2 @@

-

-# create package configuration and version files

-

-process_ups_files()

-

+# Create package configuration and version files.

cet_cmake_config()

diff --git a/art/Framework/Art/CMakeLists.txt b/art/Framework/Art/CMakeLists.txt

index 8c9a2c2..c16fccd 100644

--- a/art/Framework/Art/CMakeLists.txt

+++ b/art/Framework/Art/CMakeLists.txt

@@ -1,3 +1,5 @@

10

+find_package(ROOT REQUIRED COMPONENTS Hist Tree)

+

Configure file to handle differences for Mac.

configure_file(${CMAKE_CURRENT_SOURCE_DIR}/check_libs.cc.in

${CMAKE_CURRENT_BINARY_DIR}/check_libs.cc @ONLY

@@ -64,8 +66,8 @@ art_make_library(LIBRARY_NAME art_Framework_Art

The following are used for InitRootHandlers

art_Framework_IO_Root

art_Framework_IO_Root_RootDB

- ${ROOT_HIST}

- ${ROOT_TREE}

+ ${ROOT_Hist_LIBRARY}

+ ${ROOT_Tree_LIBRARY}

)

Build an art exec.

diff --git a/art/Framework/Core/CMakeLists.txt b/art/Framework/Core/CMakeLists.txt

index ffc68fc..4a4fe54 100644

--- a/art/Framework/Core/CMakeLists.txt

+++ b/art/Framework/Core/CMakeLists.txt

@@ -14,8 +14,7 @@ art_make(

fhiclcpp

cetlib

canvas

- ${CLHEP}

- ${TBB}

+ TBB::tbb

)

install_headers(SUBDIRS detail)

11

	Minimum Viable Product
	Overview of the MVP
	Limitations and Requirements
	Quick start
	Bootstrapping a new area
	Setting up to use SpackDev to develop your packages
	Creating your package.py files
	Specifying the full dependency tree for all packages and dependencies

	Initializing a SpackDev area
	Developing in your SpackDev area.
	Addendum: converting cetbuildtools packages to use cetmodules

